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The study of chaos in relativistic systems (both special and general) is a newly emergent field.
The main focus of this paper is the study of the chaotic trajectories of a charged particle in a static
electric field. The full special relativistic equations of motion are used. Here we concentrate on
motion in a field that is produced by two fixed centers with equal charge. The chaotic nature of
these trajectories is investigated by examining the fractal nature of the attractor basin boundary.
An examination of how these properties change with respect to fundamental parameters of the
problem, such as charges, mass, and charge separation, is undertaken. We emphasize that fractal
basin boundaries provide an important characterization of chaos in relativistic dynamics.

PACS number(s): 05.45.+b, 03.30.+p, 47.52.+j, 47.53.+n

I. INTRODUCTION

The classical three-body problem has engaged physi-
cists for over 200 years. In that time, though much
progress has been made, solutions have only been found
for a few special cases [1]. One such case is the New-
tonian motion of an infinitesimal body subject to the
1/r potential of two fixed finite bodies. The problem we
consider here is the motion of an infinitesimal charged
particle about two fixed charged particles described by
a special relativistic Hamiltonian. To the best of our
knowledge it has not been studied previously. This is a
three-body problem with a difference. Trajectories of the
test particles are markedly different from the Newtonian
model. They behave in a chaotic manner, though in New-
tonian mechanics they do not [1]. Comprehensive studies
have already been made for the more complicated grav-
itational analog of this problem. In these studies [2-6]
the motion of a charged test particle about two fixed,
charged black holes was considered. Herein, the fixed
two-center problem is studied in the absence of gravi-
tational interactions and comparisons are made between
the two problems. Despite the very different space-time
geometry and global causal structure exhibited by the
special and general relativistic cases, we find that both
systems have very similar chaotic behavior.

A qualitative understanding of the two-center problem
can be gained by considering the dynamics in terms of
particle motion in an effective potential. In the New-
tonian limit the effective potential can be shown to be
integrable. Relativistic corrections to the effective poten-
tial introduce nonlinearities which cause two qualitative
changes in the dynamics. The first change allows trajec-
tories to be captured by the central singularities—even
if the trajectories have nonzero angular momentum. The
second change in the dynamics comes from the relativis-
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tic corrections rendering the effective potential noninte-
grable. The study of this second effect will occupy the
majority of the paper. The phenomenon of relativistic
capture means that we are studying chaos in an open
system [7]. Although we will be studying energetically
bound trajectories, the dynamics can be considered as
a form of chaotic scattering [8] as the captured orbits
are not bounded in phase space. Indeed, the capture
phenomenon makes the dynamics similar to that seen in
Hamiltonian exit systems [9].

The phenomenon of relativistic capture makes the dy-
namics difficult to study using standard indicators of
chaos such as Lyapunov exponents and Poincaré sec-
tions as they rely on the existence of long-lived orbits
[10]. When attracting regions of phase space exist, we
have suggested [2,3] that the best way to study chaos
is to examine the nature of the attractor basin boundary
(ABB). Indeed, there is a complementary relationship be-
tween these methods as Lyapanov exponents are best for
studying long-lived trajectories, while ABB’s are best for
studying trajectories which are quickly captured. An ad-
ditional reason causes us to favor ABB’s over Lyapanov
exponents for relativistic systems, namely, Lyapanov ex-
ponents are not Lorentz invariant quantities, while the
fractal dimension of the ABB’s is. Another technique
commonly used to study chaos employs Poincaré sec-
tions. For open systems these are very difficult to gener-
ate as most trajectories quickly escape to various asymp-
totic regions of phase space. We did manage to generate
Poincaré sections for trajectories near stable orbits, but
these only account for trajectories forming a set of mea-
sure zero in phase space. Rather than struggling to find
these rare orbits, we used the quick capture of typical
orbits to our advantage and concentrated on generating
plots of the basin boundaries. In Sec. IV we argue more
strongly for the use of ABB’s in determining chaos.
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Before launching into this problem, some indication
is needed that it may be chaotic. The first signs of
this came in [3] where the fractal nature of an ABB
was shown for two small mass black holes (small relative
to their separation in natural units). The small masses
meant that for large regions the space time was approx-
imately Minkowskian. While the chaotic nature of the
small mass case suggests that chaos might persist in the
special relativistic analog, it is not conclusive. This is
because the multi-black-hole space time only truly re-
covers Minkowski space time when the black-hole masses
vanish. No matter how small a nonzero mass black hole
might be, it always gives rise to a causal barrier at the
horizon, leading to a distinct causal topology not shared
by Minkowski space.

To examine the fixed two-center problem in a
Minkowski metric, it is sufficient to consider a test par-
ticle with charge ¢ and mass m. Choosing the charge to
mass ratio so that ¢/m > 1 ensures that Coulomb inter-
action dominates gravity. Our special relativistic version
of the fixed two-center problem has led us into electro-
dynamics. This raises the issue of radiation. Tt is well
known that accelerating charged particles radiate. Un-
der what conditions, if any, can radiation effects be ne-
glected? For example, a classical hydrogen atom would
collapse within a microsecond due to radiation losses. In
Sec. IT we show that it is always possible to select masses
and charges so that radiation can be neglected without
loss of generality.

Having now established a motivation and suitable
model for the special relativistic two-center problem, the
outline for the rest of the paper is as follows. Section II
establishes the form of the super Hamiltonian used to de-
scribe the dynamics. Because we are considering a rela-
tivistic extension of a Newtonian problem, it is important
to understand why the Newtonian model is integrable
while the relativistic model is not. Using the Hamilto-
nian we are able to find a set of orbits that lie on KAM
surfaces, and hence do not exhibit chaos. This is done by
obtaining Hamilton’s principal function for these orbits.
We show that this set of orbits includes small velocity
Newtonian-type orbits. For weakly relativistic examples
these orbits coexist in phase space with small regions of
chaotic orbits.

The relativistic Hamiltonian is not generally separable
using the method outlined in Sec. II. It is not even possi-
ble to use perturbative techniques since velocities can be-
come ultrarelativistic, as occurs when particles get close
to one or another of the charges.

Apart from nonintegrability the relativistic Hamilto-
nian differs from the Newtonian one in that capture oc-
curs for particles with nonzero angular momentum. Sec-
tion IIT examines this phenomenon fully. A set of con-
ditions is found for when capture occurs, leading us to
examine the attractor basins. Capture conditions are
used as a rough analytic check of the computational in-
tegration routine.

The chaotic nature of the system becomes apparent
when the attractor basins are studied. The attractor
basin boundary (ABB) lies on a fractal set. Section IV
is devoted to the generation of ABB’s, the calculation
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of their fractal dimension, and a scale parameter related
to their location. An explanation is given as to why we
have chosen ABB’s as a measure of chaos. Also in Sec. IV
is an outline of the computational methods used and a
description of how each image was generated.

The last section, Sec. V, is devoted to analyzing the
variations of ABB’s with fundamental parameters. In
this section we discuss how parameters, such as mass and
charge, affect the chaotic nature of the system. Results
are presented in graphic form. The conclusion made is
that while the relativistic two-center problem is chaotic,
the measures of chaos appear to vary in an orderly man-
ner.

Finally, in Sec. VI, we develop a conclusion and outline
some suggested further work and extensions to the model.

II. FORMALISM

In the Introduction we stated that the effects of radi-
ation would be neglected in this study. In this section
we show how this can be done without altering the fun-
damental nature of the system. The loss of energy due
to radiation can be neglected only if the typical rate of
change in kinetic energy is very much greater than the
power loss due to radiation. The power radiated by a
relativistic particle of charge ¢ and mass m is [11]

= [V - (vx¥)?], (2.1)
where v is the particle’s velocity, v the Lorentz boost
factor, and the dot represents a derivative with respect

to coordinate time. For a charged particle moving in a
potential V' we have

v=_—L[VV - v(v-VV)],

- (2.2)

E=miy=—qv-VV. (2.3)

The condition which ensures that radiation reaction can
be neglected is

P < |E|. (2.4)

Using Egs. (2.1), (2.2), and (2.3) the inequality in (2.4)
can be written in terms of the divergence of the potential
as

P = 2¢%* [(VV)2 - (v- VV)2] L qlv-VV|.
3m?2

(2.5)

If the potential is due to two fixed equal charges, Q, sep-
arated by a distance a, i.e., a potential like Eq. (2.13)
for n = 2, then Eq. (2.5) can be evaluated explicitly. In
Sec. ITI we show that capture occurs for particles that are
ultrarelativistic. Since we are looking at the relativistic
capture of particles we should examine the ultrarelativis-
tic limit (Jv] — 1) of Eq. (2.5). In this limit we find that
the result depends on the type of orbit examined. If the
motion is a direct plunge, and v is parallel to (VV'), then
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the v2 factor on the left-hand side of Eq. (2.5) is canceled
and thus

e

LIV <L (2.6)
Taking a typical value for the gradient of the potential

to be Q/a?, we find the above condition can be written
as

2L «q, 2.7
: (27)
with F defined as
F= 39 (2.8)
ma

We define the scaled electrostatic energy, F, in this way
because it proves to be very useful for later calculations.
If on the other hand the motion is orbital, close to circu-
lar, then v is perpendicular to (VV') and the 2 persists.
However, v can be estimated from viral theorem consid-
erations to be approximately F in the ultrarelativistic
limit. For orbits such as these Eq. (2.5) now is

7L«
Q

Equations (2.7) and (2.9) imply that radiation can be
neglected no matter how large we make F, so long as we
make ¢/Q sufficiently small.

It is worth noting that the factor of 42 difference be-
tween the direct plunge and circular orbit cases is directly
related to the problems found in ring and linear collid-
ers. Radiation loss is never a serious problem in linear
colliders.

This means that for orbits which are captured rela-
tively quickly, i.e., with a capture time of order ¢, = a/v,
the effect of radiation can be neglected. Stated another
way, with a careful choice of parameters, relativistic cap-
ture can dominate the capture due to radiation loss.

Having established a suitable model, we are now ready
to examine the dynamical properties of the system. The
relativistic equations of motion for a nonradiating parti-
cle of charge ¢ in an electromagnetic field can be obtained
from the super Hamiltonian [11],

(2.9)

1
H = —2-(Pa — qAqL) (P — gA%), (2.10)
in conjunction with Hamilton’s equations,
dz® OH dP, oOH

Here, ) is an affine parameter that is related to the proper
time by A = 7/m, where m is the mass of the test par-
ticle. The dynamic equations of motion represented here
describe a continuous flow of phase space coordinates on
a differential manifold. The first of Hamilton’s equations
relates the canonical momentum, P,, to the mechanical
momentum, p*:

(o3 @

p%¥ = mu® = P% — qgA“%, (2.12)
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where u® = dz®/dr. Since we are considering a static
electric field, the spatial components of the vector poten-
tial all vanish, A; = 0. The field is generated by placing n
fixed charges Q; at positions (z;,y;, z;) in space, so that
Ag =V is given by

(2.13)

= Qi
V=-— .
-Z V(e — )2+ (y —vi)2 + (2 — 2)?

=1

For fields generated in this way Hamilton’s equations can
be written as

- 2.14
LV 2.14)
my =FE — 4V, (2.15)
™
(= 2.16
X= = (2.16)
w=—21vv. (2.17)
m

The dot on top of a vector refers to the derivative with
respect to coordinate time and 7 = p/m. In most cases
these equations cannot be solved analytically. We are
thus forced into numerical integration to calculate tra-
jectories. However, if n = 1 or 2 some analytic results
can be obtained. The case n=1 is the classic special
relativistic scattering problem and has been thoroughly
studied. A more interesting case occurs for n = 2. It is
interesting because there is no chaos in the Newtonian
version of the problem, nor for certain classes of orbits
in the relativistic problem, but for other classes of orbits
the system is chaotic. If two equal fixed charges Q are
placed at (0,0,-a) and (0,0,a), then Egs. (2.14)—(2.16) are
unchanged by a rescaling of coordinates. By scaling the
coordinates so that the fixed charges are at (0,0,-1) and
(0,0,1), we can rewrite Eq. (2.17) as

7« =-FVV. (2.18)
F is defined as before and V; is defined as
1 1

—Vo

= + .
Va2 +y?+ (2 -1 a2+ + (2 +1)2

(2.19)

The equations are written in this form so that all param-
eters that affect the field strength are combined into one
scaling quantity, F.

The Newtonian version of this problem has been solved
by a number of authors; for example, see [12]. The prob-
lem is solved by changing to prolate spheroidal coordi-
nates,

z = sinhsinfcos¢, y = sinh sinfsin g,

(2.20)

z = cosh cos @,

and using the Hamilton-Jacobi separation of variables
(see Goldstein [13]). In relativity this method proves to
be useful only for a certain class of orbits. In special rela-
tivity the super Hamiltonian written in these coordinates
is
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2

LI (s,d,)"’] — S, (2.21)

+—._....—
(sinh v sin 9)

where

Q = sinh® ¢ + sin? @ (2.22)
and S is Hamilton’s principal function. Since ¢, ¢, and A
are cyclic coordinates, they each have a constant of the
motion associated with them. The physical significance
of these constants is clear. £ = —§,, and L = S,4 are the
total energy and angular momentum of the test particle.
The constant associated with A comes from the fact that
the rest mass is conserved. This can be seen explicitly in
the following way:

1
—Sa=H= 5(—’”2‘72 +p%) =-m?/2.

The generating function S is said to be completely sep-
arable if it can be written in the form
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S(At,9,0,¢) = Sx(A) + Se(t) + Sy (¥) + Se(0) + Sy(¢).
(2.24)

The separability of S in the super Hamiltonian is broken
by the term

2
(M) _ (2.25)

aQ

This is because any term with Q2% cannot be separated
into a sum of two functions involving € and v only. How-
ever, if the term given in Eq. (2.25) is small compared to

4EqQ(coshy)/(aQ), i.e., if

Q E 12
F< (coshw) m cosh) ’

(2.26)

then the system becomes completely separable and

LZ
Sy(¥) = / \/E2 sinh® ¢ — — +

and

12
Se(0) = / E2%sin® 6 — nZg

+ —m?2sin? 0 + a df.

(2.29)
The fourth constant of motion, a, is
a = E?sinh? ¢ — 4EqQcoshy (S,p)?

a

L? 2 ;12
———5— —m*sinh® ¢, (2.30)

sinh® %
2 L?

= E?sin’0 — (S,0)° — —5— — m?sinh?4.  (2.31)

sin? 0

Equations (2.28) and (2.29) can be used in conjunction
with [13],

954
;= = s 2.32
p Oy ( )
to find explicit solutions involving time. The B;’s are

the initial conditions, the g;’s refer to phase-space co-
ordinates as well as time, and the «;’s are constants of
the motion associated with each coordinate. Such orbits
are said to be integrable and hence not chaotic. The
KAM [14-16] theorem states that if a small nonlinear
perturbation is added to the Hamiltonian, regions of reg-
ular motion will continue to occur. This implies that if

(223) S\ t,9,0,4) = 1/2m*XA — Et + Lo + So(0) + Sy (4),
(2.27)
where
J
4BqQ% cosh s inh?y + o dyp (2.28)

a

relativistic effects are small, then there will exist some
regions in phase space which do not have chaotic trajec-
tories.

The inequality in Eq. (2.26) gives a condition for the
type of orbits that are integrable. As expected, these
include Newtonian-type orbits where Q is large, i.e., the
field is weak and E = m. If Q is large, then 7 is large.
For large ¥, Q =~ sinh?v and coshvy = sinh. The
inequality in Eq. (2.26) now becomes

Yo > (2.33)

F
sinh )’
where 7 is the value of v at time ¢t = 0. Equation (2.33)
is satisfied for certain relativistic orbits as well as Newto-
nian ones. An example of an orbit which does not escape
yet does not collapse is shown in Fig. 1. Figure 1 was
generated using a fourth-order adaptive step size Runge-
Kutta routine [17]. In this figure F = 0.06 and the mo-
tion appears to be periodic. This orbit is not typical
of the type studied here. Collapse to a singularity does
not occur, hence radiation effects cannot be neglected as
they are cumulative. For this reason, we chose to study
orbits in which the inequality in Eq. (2.26) is seldom
obeyed. In the next section we examine what happens
when Eq. (2.26) is not satisfied. In the relativistic limit
the equations of motion are not completely separable in
prolate spheroidal coordinates. This does not prove that
the system is nonintegrable, but it does show that if the
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system is chaotic, the chaos is due solely to relativistic
effects.

III. RELATIVISTIC CAPTURE

In Newtonian mechanics, trajectories with nonzero an-
gular momentum do not collapse into a singularity. In
relativity, even trajectories with nonzero angular momen-
tum can terminate at the central singularity [18]. This
effect can be easily demonstrated in the case of one fixed
center. The spherical symmetry in this case allows the
motion to be modeled by a one-dimensional effective po-
tential. The super Hamiltonian may be used to obtain
the condition

2 dr 2 Vz —E2
m - + eff = .

- (3.1)

Here 7 is the proper time along the trajectory and the
effective potential is given by

2EqQ 4 L? — ¢?Q?

2 .2
Vg =m* — . 2 (3.2)
In the Newtonian limit this reduces to
2mqQ  L?
A% =m? - == 4 = 3.3
Neff =™ . Tz (3.3)

Near 7 = 0 the Newtonian effective potential is always
dominated by the repulsive angular momentum barrier
L?/r%. For relativistic orbits the repulsive barrier only
exists when L > ¢Q. Trajectories with L < ¢Q can be
captured.

It is worth noting that in the ultrarelativistic limit the
angle @ between the position and the momentum vectors
is given near r = 0 by

6 ~ arcsin —.

qQ

This means that @ is constant, hence the trajectory is a
spiral of finite length and therefore takes a finite time to

(3.4)

FIG. 1. A trajectory with F = 0.03 and initial conditions
(x =4.5,y = 2.0, and w = 0).
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FIG. 2. A section of the attractor basins for £ = 0 and
F=1.

be captured.

Figure 2 was generated by following the trajectories
of particles that start at the origin with various initial
values of m, and m,. Trajectories that finish at (0,0,-a)
are labeled black, those that finish at (0,0,a) are labeled
white, and those that do not collapse to a singularity,
within a finite time, are labeled grey. The trajectories
labeled grey are stable in the sense that doubling the
maximum time along a given trajectory did not alter the
size or shape of the grey regions. Figure 2 is an 840 x 840
plot with F = 1. The two most noticeable features of
this figure, apart from its regions of complexity, are the
escape of particles with a ||=|| 2 2.8 and the capture of
particles with a m, < 1. Both these results can be shown
analytically.

If a particle is set in motion at the origin, then in order
for its motion to be bounded it must have an energy
less than or equal to the rest mass of the particle. This
implies that

17l < V(2F +1)2 - 1.

For F = 1, Eq. (3.5) tells us that escape occurs for
||| > v/8 ~ 2.8. The capture of particles with 7, < 1
can be shown by considering the simpler case where the
potential due to the second fixed charge is ignored. We
can justify this by assuming that momentum in the z di-
rection is unaffected until the particle is so close to one
charge that the other can be ignored. Using the condi-
tion L < qQ, in conjunction with the fact that L = amm,
at the origin, the capture condition becomes

(3.5)

e S F. (3.6)

At this point we note that capture occurs for similar
conditions in general relativity. For a single, extremely
charged black hole the effective potential reads
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o (3.7)

1 M\? L2
2 - - 2 il =
Verr = 1+ M/r)4 |:m (1+ r ) * r2

in isotropic coordinates [19,20]. In these coordinates
r = 0 corresponds to a surface of finite area (the horizon)
and not the central singularity. The singularity lies be-
low r = 0. As we stated in the Introduction, the global
causal topology is different for the special and general
relativistic situations due to the horizon at » = 0, but it
is worth noting that they share the same causal structure
for 7 > 0. The potential (3.7) has a maximum at

_ I*—2M?m? — LI~ aM7m? 55)
h 2Mm? ) )

Particles with an energy which exceeds the maximum
value of the potential barrier are subject to capture by
the black hole. For ultrarelativistic particles the capture
condition reads

L < 24/4(E/m)% —1(Mm) ,

while for nonrelativistic particles the condition becomes

L <V2(2+ V13)Y*(Mm) .

(3.9)

(3.10)

We see that termination of trajectories at the central
singularity is a standard feature of relativistic dynamics,
both special and general.

IV. FRACTAL ATTRACTOR BASIN
BOUNDARIES

The capture of particles leads us to examine the na-
ture of the attractor basin boundary. Studies of chaotic
systems often focus on the determination of Lyapunov
exponents as a measure of chaos [21]. The Lyapunov ex-
ponents ), in flat space time are defined by choosing a
point x in phase space, at the center of a ball of radius
€ < 1. After a time t the ball evolves into an ellipsoid
with semiaxes € (t), where k ranges from one to the di-
mension of the phase space. The Lyapunov exponents
are

. 1 €L (t)

Ae(@) = Jim lim 3 In = (41)
assuming the limits exist. The Ay are constant along a
trajectory, and are often constant over larger regions of
phase space such as the basin of an attractor. However,
there are problems with this approach. First, the exis-
tence of a positive Lyapunov exponent is not enough to
determine if a system is chaotic [22]. Integrable systems
can have isolated unstable periodic orbits. For example,
the Newtonian version of the fixed two-center problem
(which is not chaotic) has a set of positive Lyapunov ex-
ponents for orbits that are perpendicular to the z axis.
Second, the computation of Lyapunov exponents requires
setting a finite time limit, thus inducing an error. If par-

ticles are captured too quickly this error is large.
In the general relativistic problem the topology of the
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z

FIG. 3. A section of attractor basins for # = 0 and F = 1.

ABB was used as a measure of chaos. A particularly
appealing feature of this method in general relativity is
that ABB’s furnish a coordinate independent measure of
chaos. While this is not an issue in special relativity, the
ABB’s continue to recommend themselves as a measure
of chaos since they do not require long-lived orbits.

In chaotic systems the ABB will lie on a fractal set,
while in nonchaotic systems they will not. Using this ap-
proach we do not have the problems associated with finite
time capture. In fact, the faster the capture the better
since it reduces computational time. To determine if the
ABB lies on a fractal set we must measure the fractal di-
mension of the ABB. One of the distinguishing features
of fractal sets is their noninteger fractal dimensions. This
gives us an unambiguous way of determining the chaotic
nature of the system.

3.6

&

FIG. 4. Magnification of Fig. 3.
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If the y axis is chosen so that it is perpendicular to the
plane of motion, then the ABB’s lie in a four-dimensional
phase space. Clearly, it is not possible to generate graph-
ics for these. A two-dimensional slice of this phase space
must be taken in order to generate tangible pictures. All
the ABB’s generated for this paper are on an 840 x 840
grid, and are generated in the same manner as Fig. 2.
Most of the phase-space slices are done by setting the
initial momentum to zero. This not only reduces com-
putational time, by enabling most trajectories to be cap-
tured, but makes comparison with the general relativistic
study easier.

The ABB for F =1 is shown in Fig. 3. We first notice
that it appears to have all the expected symmetries. One
of the most fascinating features of this image is the large
portion of the ABB that appears to have a fractal nature.
Repeated magnification of this image, Figs. 4, 5, and 6,
reveals detailed structure on finer and finer scales. This
is one of the properties that all fractals have in common.
Punctuated between these regions of fractal phase space
are regions which are distinctly nonfractal.

Having decided what slice of the ABB phase space to
measure, the next step is to find the fractal dimension.
There are a number of definitions of fractal dimensions
in the literature. The one that is used here is called the
box dimension [23]. We will use it because of its ease in
computation and because of its common use.

Consider the bounded set F', which is a subset of R”,
then N(F) is the least number of sets of cubes of length
€ which completely covers the set F. By definition the
box dimension for F' is

In N.(F)

dimpgp = — lim ———=~.

2
e—~0 Ine (4.2)

Because our set is not defined by any known iterative map
it is not possible to find the dimension analytically. This
means we are forced to use computational techniques.
From Eq. (4.2) we can see that the negative gradient of
In N, versus ln e gives us the box dimension.

1.34

1.335

1.325

1.32

3.5 3.505 3.51 3.515 3.52

FIG. 5. Magnification of Fig. 4.
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3.501 3.5012 3.5014 3.5016 3.5018 3.502

z

FIG. 6. Magnification of Fig. 5.

The set we wish to examine is the set of points which
lie on the ABB in some region of phase space. To do this
the whole region of interest is covered by a grid. Cubes of
length € are constructed from this grid. If a cube contains
two or more grid points that fall into different attractors,
then that cube lies on the ABB. Put more formally, each
point z; has an attractor associated with it, A,,. A cube
B(zo,¢€) of length € and centered at o is said to lie on
the ABB if

Ve > 03 z1,z2 : {z1,22 € B(xo,€)}
and (4.3)

{ml # $27A1:1 #: Amg}-

To find the limit in Eq. (4.2) the number of cubes N, of
length € that lie on the ABB is counted. This is repeated
for as many values of € as possible. Plotting In N, against
In € gives a straight line. The gradient of this line, which
is the negative of the box dimension, is calculated using
a x? fit.

In order to maximize the accuracy in calculating the
box dimension, the greatest number of values for € is
needed, the implication being that the size of the grid
should be chosen so that as many combinations of cubes
as possible completely cover the phase-space slice. There-
fore, the attractor basin is divided into an 840 x 840 grid
since 840 has 31 factors. This is the largest number of
factors for any number below 1000, the number chosen
as an upper limit due to program running time.

The box dimension for Fig. 7 was calculated in the
manner described above. The result is shown in Fig. 8.
This figure shows that most of the points do in fact lie on
a straight line. This gives us confidence that these images
are in fact true fractals and not just roundoff errors in
the computer.

On closer inspection, it can be seen that for large €
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FIG. 7. A subsection of attractor basins in Fig. 3.

there seem to be to many cubes (a cube is a square in
two dimensions) that lie on ABB. The reason for this
is quite clear. If we make € too large, i.e., by dividing
the phase space into four sections, then all the cubes will
most likely contain both black and white. This means
essentially that all cubes lie on the boundary, i.e., we
have overcounted.

A second and slightly more subtle complication occurs
for small €. From Eq. (4.2) it would seem that the smaller
the value of €, the better. The problem comes about be-
cause the color of a subcube is defined by only one point
in that subcube. Imagine, for example, that that sub-
cube lies on the boundary and is half-filled with black and
half with white. This would mean there was a 50%-50%
chance that this cube would be labeled black or white.
If our cube € was made up of four such subcubes, then

In N,

Ine

FIG. 8. Calculation of the box dimension for F = 1.
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FIG. 9. A section of attractor basins for # =
F = 0.03.

0 and

there would be a 1/8 chance that this cube would not be
counted as being on the boundary. If € was made up of
nine such subcubes, then there is a (1/2)® chance that it
will not be counted. For this reason we get fewer counts
than we expected for small e.

To eliminate both these errors the first three and last
six points of Fig. 8 are removed before determining the
gradient. The result is that the fractal dimension of the
ABB for Fig. 3 and hence Fig. 7 is dp = 1.75 4 0.01.

0 and

A section of attractor basins for ® =

FIG. 10.
F = 0.05.
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FIG. 11. A section of attractor basins for * = 0 and F = 3.

V. DEPENDENCE OF FRACTAL STRUCTURE
ON F

Since we are using the ABB as a measure of chaos in
the system, we need to ask ourselves how does it depend
on the field strength? It is of fundamental importance
not only to determine whether or not a system is chaotic,
but also how the chaotic nature changes with the funda-
mental parameters. In Figs. 9-12 we see a major change
of fractal structure in different regions and for different
values of F. The graphics make the differences explic-

Y

FIG. 12. A section of attractor basins for # = 0 and
F = 50.

1.825
1.775 +
1.75
dp
1.725

1.675

InF

FIG. 13. The effect varying F has on the box dimension.

itly apparent. To study this strong dependence on F,
we adjust the scaling parameter F and remeasure the
box dimension. However, the dimension for a given scal-
ing parameter F varies depending on the portion of the
attractor basin examined. For this reason we chose to
measure the box dimension within the same relative re-
gion each time. How the region is chosen is related to
the scale point, described below.

Apart from the box dimension, there is also another
measure of the onset of chaos in the system. For the pur-
poses of this paper it is called the scale point P. The
scale point is the smallest value of z at which a particle
with zero initial momentum does not fall into the near-
est charge. This point represents the least lower bound
of the fractal set. As such, it indicates that a set of un-
stable trajectories with nonzero measure exists beyond
this point.

The scaling point leads naturally to deciding what re-
gion of phase space the box dimension is measured for.

Somewhat arbitrarily, the box dimension for each F is
measured in a square of phase space whose length is five

times P. Each square is located so that the bottom left-
hand corner is at the origin.

Figures 13 and 14 show how the dimension and scale
point vary with InF. The error bars in Fig. 13 are the

-3 -2 -1 0 1 2 3 4

InF

FIG. 14. The effect varying F has on the scaling point.
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standard deviation of points from the line of best fit used
to determine the gradient. In both cases it is clear that
there exists a functional relationship between F and what
is being measured. Determining this functional relation-
ship is not trivial. Both plots show that for F < 20 the
fractal nature of the ABB changes quite significantly. In
this region both the box dimension and scale point are
both very sensitive to F. For values of F 2 20 the scaling
point and box dimension seem to approach a limit.
Figure 13 can reasonably be fitted to a straight line for
values of F between about 0.15 and 30. In this region the
functional relationship between box dimension dg and F
is
dp ~ 1.76 — 0.021n F. (5.1)
Figure 14, on the other hand, cannot reasonably be fitted
to a straight line for any significant range of F values. Its
characteristics resemble more of an arctan-type function.
These results now complete the study of the relativistic
fixed two-center problem. This work and the work on the
general relativistic problem has shown that the fixed two-
center problem is chaotic. In fact, the Newtonian limit
is unique in that it is integrable. The chaotic nature of

this system is nicely shown by the fractal nature of the
ABB.

VI. CONCLUSION AND FURTHER WORK

We have established that the simplest three-body prob-
lem, motion with two fixed centers, is not integrable when
special relativistic effects are taken into account. While
this result has already been discovered in the context of
general relativity [4], we now see that it is not due to
any exotic behavior caused by black holes. In particu-
lar, it should not be attributed to the nonlinearity of the
gravitational force. Chaos is present even when the po-
tentials generated by the two centers obey the superpo-
sition principle. Clearly, it is the relativistic description
of the kinematics, and not the loss of the superposition
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principle, which renders the special and general relativis-
tic two-center problem chaotic. To be specific, it is the
nonlinear way in which the potential energy enters the
relativistic Hamiltonian that renders the dynamics non-
integrable.

Our study can be summarized as follows. After es-
tablishing that radiation reaction could be neglected, we
employed the Hamilton-Jacobi method to discover under
what conditions the system was integrable. The inte-
grable cases were found to include Newtonian-type orbits.
For non-Newtonian orbits some properties unique to the
relativistic Hamiltonian were found. One of these prop-
erties was the capture of particles with nonzero angular
momentum. This meant that relativistic particles could
spiral into one of the charges within a finite time. As a
consequence of this we were able to study the attractor
basin boundaries. These ABB’s turned out to be frac-
tals and hence indicated that the system was chaotic. To
study how the fractals changed with F, both the scaling
point and box dimension were examined.

Though this study is comprehensive, there is still fur-
ther work that could be done. For example, radiation ef-
fects could be added. This would mean that orbits which
are not ultrarelativistic will be captured due to loss of
energy. Some other dissipative force such as a viscous
drag could also be included. Lyapunov exponents could
be calculated for orbits that do not terminate in a finite
time. A possible connection between the dimension of
the ABB and the magnitude of the Lyapunov exponents
could also be investigated.
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FIG. 10. A section of attractor basins for # = 0 and
F = 0.05.



FIG. 11. A section of attractor basins for # = 0 and F = 3.



FIG. 12. A section of attractor basins for ¥+ = 0 and



FIG. 2. A section of the attractor basins for z = 0 and
F=1l.



FIG. 3. A section of attractor basins for # = 0 and F = 1.



FIG. 4. Magnification of Fig. 3.
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FIG. 5. Magnification of Fig. 4.
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FIG. 6. Magnification of Fig. 5.



FIG. 7. A subsection of attractor basins in Fig. 3.



FIG. 9. A section of attractor basins for # = 0 and
F = 0.03.



